Publications

[102] T. Omiya, E. Pedretti, M. Evaristo, A. Cavaleiro , A.C. Serra, J.F.J. Coelho, F. Ferreira, and M.C. Righi, Synergistic effects of nitrogen-containing functionalized copolymer and silicon-doped DLC for friction and wear reduction, Tribology International 200, 110183 (2024). (PDF)

[101] E. Damiani, M. Marsili, and M.C. Righi, Tuning the adhesion of diamond/copper interfaces through surface chemical modifications and reconstruction, Carbon 230, 119555 (2024).

[100] A. Pacini, M. Ferrario, S. Loehlé, and M.C. Righi, Advancing tribological simulations of carbon-based lubricants with active learning and machine learning molecular dynamics, The European Physical Journal Plus 139, 549 (2024) (PDF).

[99] Y. Long, A. Pacini, M. Ferrario, N. Van Tran, S. Peeters, B. Thiebaut, S. Loehlé, J.M. Martin, M.C. Righi, and M.I. De Barros Bouchet, Superlubricity from mechanochemically activated aromatic molecules of natural origin: A new concept for green lubrication, Carbon 228, 119365 (2024).

[98] H.T.T. Ta, M. Ferrario, S. Loehlé, and M.C. Righi, Ab initio Informed Machine Learning Potential for Tribochemistry and Mechanochemistry: Application for Eco–friendly Gallate Lubricant Additive, Computational Materials Today 1, 100005 (2024).

[97] G. Boidi, B. Ronai, D. Heift, F. Benini, M. Varga, M.C. Righi, A. Rosenkranz, Tribology of 2D Black Phosphorus – Current State-of-the-Art and Future Potential, Advances in Colloid and Interface Science 328, 103180 (2024).

[96] E. Poli, M. Cutini, M.A. Nosir, O. Chehaimi, and M.C. Righi, Effects of surface chemical modifications on the adhesion of metallic interfaces. An high-throughput analysis, Applied Surface Science 664, 160177 (2024) (PDF).

[95] G. Boidi, D. Zambrano, S. Schwarz, E. Marquis, M. Varga, M. Rodríguez Ripoll, E. Badisch, M.C. Righi, C. Gachot, P.G. Grtzmacher, and A. Rosenkranz, Solid lubrication performance of hybrid Ti3C2Tx/MoS2 coatings, Carbon 225, 119067 (2024).

[94] S. Giaremis, and M.C. Righi, Tuning the adsorption of H2O, H2 and O2 molecules on diamond surfaces by B-doping, Surfaces and Interfaces 46, 104105 (2024) (PDF).

[93] A. Rosenkranz, B. Wang, D. Zambrano, J. Marqués Henríquez, J.Y. Aguilar-Hurtado, E. Marquis, P. Restuccia, B.C. Wyatt, M.C. Righi, and B. Anasori, Solid-Lubrication performance of Ti3C2Tx — effect of tribo-chemistry and exfoliation, Materials Today Nano 25, 100464 (2024) (PDF).

[92] Y. Guan, E. Marquis, M.C. Righi, J. Galipaud, F. Dubreuil, J. Dufils, E. Macron, F. Dassenoy, M.I. De Barros Bouchet, Friction control by load-induced structure modification of overbased detergent in fully formulated lubricant, Tribology International 192, 109307 (2024).

[91] H.T.T. Ta, N.V. Tran, and M.C. Righi, Atomistic Wear Mechanisms in Diamond: Effects of Surface Orientation, Stress, and Interaction with Adsorbed Molecules, Langmuir 39, 14396 (2023) (PDF).

[90] F. Benini, P. Restuccia, and M.C. Righi, Zinc dialkyldithiophosphates adsorption and dissociation on ferrous substrates: An ab initio study, Applied Surface Science 642, 158419 (2023) (PDF).

[89] H.T.T. Ta, N.V. Tran, and M.C. Righi, Nanotribological Properties of Oxidized Diamond/Silica Interfaces: Insights into the Atomistic Mechanisms of Wear and Friction by Ab Initio Molecular Dynamics Simulations, ACS Applied Nano Materials 6, 16674 (2023) (PDF).

[88] P.G. Grützmacher, M. Cutini, E. Marquis, M. Rodríguez Ripoll, H. Riedl, P. Kutrowatz, S. Bug, C.J. Hsu, J. Bernardi, C. Gachot, A. Erdemir, and M.C. Righi, Se Nano-Powder Conversion into Lubricious 2D Selenide Layers by Tribochemical Reactions, Advanced Materials 35, 2302076 (2023) (PDF).

[87] G. Losi, O. Chehaimi, and M.C. Righi, TribChem: a Software for the First-principles, High-Throughput Study of Solid Interfaces and their Tribological properties, Journal of Chemical Theory and Computation 19, 5231 (2023) (PDF).

[86] S. Kajita, A. Pacini, G. Losi, N. Kikkawa, and M.C. Righi, Accurate multiscale simulation of frictional interfaces by Quantum Mechanics/Green’s Function molecular dynamics, Journal of Chemical Theory and Computation 19, 5176 (2023) (PDF).

[85] E. Pedretti, P. Restuccia, and M.C. Righi, Xsorb: a software for identifying the most stable adsorption configuration and energy of a molecule on a crystal surface, Computer Physics Communications 291, 108827 (2023) (PDF).

[84] A. Ciniero, G. Fatti, M. Marsili, D. Dini, and M.C. Righi, Defects drive the tribocharging strength of PTFE: an ab-initio study, Nano Energy 112, 108502 (2023) (PDF).

[83] F. Benini, N. Bassoli, P. Restuccia, M. Ferrario, and M.C. Righi, Interaction of water and oxygen molecules with phosphorene: an ab initio study, Molecules 28, 3570 (2023) (PDF).

[82] P. Restuccia, G. Losi, O. Chehami, M. Marsili, and M.C. Righi, High throughput first principles prediction of interfacial adhesion energies in metal-on-metal contacts, ACS Applied Materials & Interfaces 15, 19624 (2023) (PDF).

[81] E. Marquis, F. Benini, B. Anasori, A. Rosenkranz, and M. C. Righi, Effect of vacancies and edges in promoting water chemisorption on titanium-based MXenes, Nano Convergence 10, 16 (2023) (PDF).

[80] A. Rosenkranz, M.C. Righi, A. B. Anasori, and V. Mochalin, Perspective of 2D MXenes Tribology, Advanced Materials 35, 2207757 (2023) (PDF).

[79] S. Peeters, G. Losi, S. Loehlé and M.C. Righi, Aromatic molecules as sustainable lubricants explored by ab initio simulations, Carbon 203, 717 (2023) (PDF).

[78] M. Cutini, G. Forghieri, M. Ferrario, and M.C. Righi, Adhesion, Friction and Tribochemical reactions at the Diamond-Silica Interface, Carbon 203, 601 (2023) (PDF).

[77] G. Losi, M. Cutini, P. Restuccia, and M. C. Righi, Modeling phosphorene and MoS2 interacting with iron: lubricating effects compared to graphene, Journal of Nanostructure in Chemistry 13, 497 (2023) (PDF).

[76] P.V. Antonov, P. Restuccia, M.C. Righi, and J.W.M. Frenken, Attractive curves: the role of deformations in adhesion and friction on graphene, Nanoscale Advances 4, 4175 (2022) (PDF).

[75] N.V. Tran, and M.C. Righi, Ab initio insights into the interaction mechanisms between H2, H2O, and O2 molecules with diamond surfaces, Carbon 199, 497 (2022) (PDF).

[74] E. Marquis, M. Cutini, B. Anasori, A. Rosenkranz, and M.C. Righi, Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study, ACS Applied Nano Materials 5, 10516 (2022) (PDF).

[73] S. Peeters, G. Losi, P. Restuccia, and M. C. Righi, Unravelling the mechanism to form MoS2 lubricant layers from MoDTC by ab initio simulations, Applied Surface Science 606, 154880 (2022) (PDF).

[72] S. Peeters, A. Barlini, J. Jain, N. N. Gosvami, and M. C. Righi, Adsorption and decomposition of ZDDP on lightweight metallic substrates: Ab initio and experimental insights, Applied Surface Science 600, 153947 (2022) (PDF).

[71] Z. Liu, A. Hinaut, S. Peeters, S. Scherb, E. Meyer, M.C. Righi, and T. Glatzel, 2D KBr/Graphene Heterostructures—Influence on Work Function and Friction, Nanomaterials 12, 968 (2022) (PDF).

[70] M. Wolloch, G. Losi, O. Chehaimi, F. Yalcin, M. Ferrario, and M.C. Righi, High-throughput generation of potential energy surfaces for solid interfaces, Computational Materials Science 207, 111302 (2022) (PDF).

[69] M. Stella, C.D. Lorentz, and M.C. Righi, Effects of intercalated water on the lubricity of sliding layers under load: a theoretical investigation on MoS2, 2D Materials 8, 35052 (2021) (PDF).

[68] S. Peeters, C. Charrin, I. Duron, S. Loehlé, B. Thiebaut, and M.C. Righi, Importance of the catalytic effect of the substrate in the functionality of lubricant additives: the case of molybdenum dithiocarbamates, Materials Today Chemistry 21, 100487 (2021) (PDF).

[67] Z. Liu, A. Hinaut, S. Peeters, S. Scherb, E. Meyer, M.C. Righi, and T. Glatzel, Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene, Beilstein Journal of Nanotechnology 12, 432 (2021) (PDF).

[66] G. Losi, S. Peeters, F. Delayens, H. Vezin, S. Loehlé, B. Thiebaut, and M.C. Righi, Experimental and Ab Initio Characterization of Mononuclear Molybdenum Dithiocarbamates in Lubricant Mixtures, Langmuir 37, 4836 (2021) (PDF).

[65] C. Ayestarán Latorre, J. P. Ewen, D. Dini, and M.C. Righi, Ab initio insights into the interaction mechanisms between boron, nitrogen and oxygen doped diamond surfaces and water molecules, Carbon 171, 575 (2021).

[64] G. Fatti, M.C. Righi, D. Dini, and A. Ciniero, Ab Initio Study of Polytetrafluoroethylene Defluorination for Tribocharging Applications, ACS Applied Polymer Materials 2, 5129 (2020).

[63] C. Corsini, S. Peeters, and M.C. Righi, Adsorption and Dissociation of Ni(acac)2 on Iron by Ab Initio Calculations, Journal of Physical Chemistry A 124, 8005 (2020) (PDF).

[62] G. Ramirez, O. L. Eryilmaz, G. Fatti, M.C. Righi, J. Wen, and A. Erdemir, Tribochemical Conversion of Methane to Graphene and Other Carbon Nanostructures: Implications for Friction and Wear, ACS Applied Nano Materials 3, 8060 (2020).

[61] S. Peeters, P. Restuccia, S. Loehlé, B. Thiebaut, and M.C. Righi, Tribochemical Reactions of MoDTC Lubricant Additives with Iron by Quantum Mechanics / Molecular Mechanics Simulations, Journal of Physical Chemistry C 124, 13688 (2020) (PDF).

[60] G. Losi, P. Restuccia, and M.C. Righi, Superlubricity in phosphorene identified by means of ab initio calculations, 2D Materials 7, 025033 (2020) (PDF).

[59] P. Restuccia, M. Ferrario and M.C. Righi, Monitoring water and oxygen splitting at graphene edges and folds: Insights into the lubricity of graphitic materials, Carbon 156, 93 (2020).

[58] A. Ciniero, G. Fatti, M.C. Righi, D. Dini, and T. Reddyhoff, A combined experimental and theoretical study on the mechanisms behind tribocharging phenomenon and the influence of triboemission, Tribology Online 14, 367 (2019).

[57] P. Restuccia, M. Ferrario, and M.C. Righi, Quantum Mechanics / Molecular Mechanics (QM/MM) applied to tribology: Real-time monitoring of tribochemical reactions of water at graphene edges, Computational Materials Science 173, 109400 (2019).

[56] G. Fatti, and M.C. Righi, Selenium Chemisorption Makes Iron Surfaces Slippery, Tribology Letters 67, 125 (2019).

[55] M. Wolloch, G. Losi, M. Ferrario, and M.C. Righi, High-throughput screening of the static friction and ideal cleavage strength of solid interfaces, Scientific Reports 9, 17062 (2019).

[54] S. Peeters, P. Restuccia, S. Loehlé, B. Thiebaut, and M.C. Righi, Characterization of Molybdenum Dithiocarbamates by First Principles Calculations, Journal of Physical Chemistry A 123, 7007 (2019).

[53] M. Schulzendorf, A. Hinaut, M. Kisiel, R. Joehr, R. Pawiak, P. Restuccia, E. Meyer, M.C. Righi, and T. Glatzel, Altering the Properties of Graphene on Cu(111) by Intercalation of Potassium Bromide, ACS Nano 13, 5485, 5485 (2019).

[52] G. Fatti, M.C. Righi, D. Dini, and A. Ciniero First-Principles Insights into the Structural and Electronic Properties of Polytetrafluoroethylene in Its High-Pressure Phase (Form III), Journal of Physical Chemistry C 123, 6250 (2019).

[51] G. Fatti, P. Restuccia, C. Calandra, and M.C. Righi, Phosphorus adsorption on Fe(110): An ab initio comparative study of iron passivation by different adsorbates, Journal of Physical Chemistry C 122, 28105 (2018).

[50] M. Wolloch, G. Levita, P. Restuccia, and M.C. Righi, Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces, Physical Review Letters 121, 026804 (2018).

[49] P. Restuccia, G. Levita, M. Wolloch, G. Losi, G. Fatti, M. Ferrario, and M.C. Righi, Ideal adhesive and shear strengths of solid interfaces: A high throughput ab initio approach, Computational Materials Science 154, 517 (2018). 

[48] S. Loehlé, and M.C. Righi, Ab Initio Molecular Dynamics Simulation of Tribochemical Reactions Involving Phosphorus Additives at Sliding Iron Interfaces, Lubricants 6, 31 (2018).

[47] M.C. Righi, Chapter Understanding the Tribochemistry of Lubricant Additives by Ab initio Calculations: The Case of Phosphites of the book Advanced Analytical Methods in Tribology (2018).

[46] G. Levita, S. Kajita, and M.C. Righi, Water adsorption on the diamond (111) surfaces: An ab initio study, Carbon 127, 533 (2017).

[45] S. Loehlé, and M.C. Righi, First principles study of organophosphorus additives in boundary lubrication conditions: Effects of hydrocarbon chain length, Lubrication Science 29, 485 (2017).

[44] D. Marchetto, P. Restuccia, A. Ballestrazzi, M.C. Righi, A. Rota, and S. Valeri, Surface passivation by graphene in the lubrication of iron: A comparison with bronze, Carbon 116, 375 (2017).

[43] G. Levita, and M.C. Righi, Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation, ChemPhysChem 18, 1475 (2017). Cover picture of the issue.

[42] G. Levita, P. Restuccia, and M.C. Righi, Graphene and MoS2 interacting with water: A comparison by ab initio calculations, Carbon 107, 878 (2016).

[41] P. Restuccia, M. Ferrario, P. L. Silvestrelli, G. Mistura, and M.C. Righi, Size-dependent commensurability and its possible role in determining the frictional behavior of adsorbed systems, Physical Chemistry Chemical Physics 18, 28997 (2016) (PDF).

[40] P. Restuccia, and M. C. Righi, Tribochemistry of graphene on iron and its possible role in lubrication of steel, Carbon 106, 118 (2016) (PDF).

[39] M.C. Righi, S. Loehle, M.I. De Barros Bouchet, S. Mambingo-Doumbe, and J.M. Martin, A comparative study on the functionality of S- and P-based lubricant additives by combined first principles and experimental analysis, RSC Advances 6, 47753 (2016).

[38] M.C. Righi, G. Zilibotti, S. Corni, M. Ferrario, and C.M. Bertoni, First-Principle Molecular Dynamics of Sliding Diamond Surfaces. Tribochemical Reactions with Water and Load Effects, Journal of Low Temperature Physics 185, 174 (2016).

[37] S. Kajita, and M.C. Righi, A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamicsCarbon 103, 193 (2016) (PDF).

[36] S. Kajita, and M.C. Righi Insights into the tribochemistry of silicon-doped carbon based films by ab initio analysis of water/surface interactions, Tribology Letters 61, 17 (2016) (PDF).

[35] M.C. Righi, S. Loehle, M.I. de Barros Bouchet, D. Philippon, and J.M. Martin, Trimethyl-phosphite dissociative adsorption on iron by combined first-principle calculations and XPS experiments, RSC Advances 5, 101162 (2015).

[34] G. Levita, E. Molinari, T. Polcar, and M.C. Righi, First principles comparative study on interlayer adhesion and shear strength of transition metal dichalcogenides and graphene, Physical Review B 92, 085434 (2015).

[33] M.I. De Barros-Bouchet, M.C. Righi, D. Philippon, S. Mambingo-Doumbe, T. Le-Mogne, J.M. Martin, and A. Buffet, Tribochemistry of phosphorus additives: experiments and first-principles calculations, RSC Advances 5, 49270 (2015).

[32] M. Pierno, L. Bignardi, M.C. Righi, L. Bruschi, S. Gottardi, M. Stohr, P. Silvestrelli, P. Rudolf, and G. Mistura, Thermolubricity of Xe monolayers on graphene, Nanoscale 6, 8062 (2014).

[31] G. Levita, A. Cavaleiro, E. Molinari, T. Polcar, and M.C. Righi, Sliding properties of MoS2 layers: Load and interlayer orientation effects, Journal of Physical Chemistry C 118, 13809 (2014).

[30] G. Zilibotti, S. Corni, and M.C. Righi, Load-induced confinement activates diamond lubrication by water, Physical Review Letters 111, 146101 (2013).

[29] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi, Frictional properties of multilayer graphene by ab initio and classical molecular dynamics calculations, 5th World Tribology Congress (WTC) 1, 744 (2013).

[28] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi, Potential energy surface for graphene on graphene: derivation, analytical description, and microscopic interpretation, Physical Review B 86, 245434 (2012).

[27] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi, Friction by shear deformations in multilayer graphene, Journal of Physical Chemistry C 116, 21104 (2012).

[26] M. Reguzzoni, and M.C. Righi, Size dependence of static friction between solid clusters and substrates, Physical Review B 85, 201412(R) (2012).

[25] M.I. De Barros-Bouchet, G. Zilibotti, C. Matta, M.C. Righi, L. Vandenbulcke, B. Vacher, and J.M. Martin, Friction of Diamond in Presence of Water Vapor and Hydrogen Gas. Coupling Gas Phase Lubrication and First Principles Studies, Journal of Physical Chemistry C 116, 6966 (2012).

[24] G. Zilibotti, S. Corni, and M.C. Righi, Formation energy of dangling bonds on hydrogenated diamond surfaces: a first principle study, Physical Review B 85, 033406 (2012).

[23] G. Zilibotti, and M.C. Righi, Ab Initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage, Langmuir 27, 6862 (2011).

[22] G. Zilibotti, M. Ferrario, C.M. Bertoni, and M.C. Righi, Ab initio calculation of adhesion and potential corrugation of diamond (001) interfaces, Computer Physics Communications 182, 1796 (2011).

[21] O. Manelli, S. Corni, and M.C. Righi, Water adsorption on native and hydrogenated diamond (001) surfaces, Journal of Physical Chemistry C 114, 7045 (2010).

[20] M. Reguzzoni, M. Ferrario, S. Zapperi, and M.C. Righi, Onset of frictional slip by domain nucleation in adsorbed monolayers, Proceedings of the National Accademy of Sciences (PNAS) 107, 1113 (2010).

[19] M. Rosini, M.C. Righi, P. Kratzer, and R. Magri, In adsorption and diffusion on In-ritch (2×4) reconstructed InGaAs surfaces on GaAs(001), AIP conference proceedings 1199, 21 (2010).

[18] M. Bertelli, J. Homoth, M. Wenderoth, A. Rizzi, R. G. Ulbrich, M.C. Righi, C.M. Berti, and A. Catellani, Atomic and electronic structure of the nonpolar GaN(1-100) surface, Physical Review B 80, 115324 (2009).

[17] G. Zilibotti, M.C. Righi, and M. Ferrario, Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces, Physical Review B 79, 075420 (2009).

[16] M. Rosini, M.C. Righi, P. Kratzer, and R. Magri, Indium surface diffusion on InAs (2×4) reconstructed wetting layers on GaAs(001), Physical Review B 79, 075302 (2009).

[15] M.C. Righi, and M. Ferrario, Pressure induced friction collapse of rare gas boundary layers sliding over metal surfaces, Physical Review Letters 99, 176101 (2007).

[14] M. Bertelli, J. Homoth, M. Wenderoth, A. Rizzi, R. G. Ulbrich, M.C. Righi, C.M. Bertoni, and A. Catellani, Atomic and electronic structure of the cleaved 6H-SiC(11-20) surface, Physical Review B 75, 165312 (2007).

[13] M.C. Righi, and M. Ferrario, Potential energy surface for rare gases adsorbed on Cu(111): Parametrization of the gas/surface interaction potential, Journal of Phys. Condens. Matter 19, 305008 (2007).

[12] M.C. Righi, Rita Magri, and C.M. Bertoni, Study of arsenic for antimony exchange at the Sb-stabilized GaSb(001) surface, Applied Surface Science 252, 5271 (2006).

[11] M.C. Righi, C.A. Pignedoli, R. Di Felice, A. Catellani, and C.M. Bertoni, Combined ab initio and kinetic Monte Carlo simulations of C diffusion on the √3x√3 b-SiC(111) surface, Physical Review B 71, 075303 (2005).

[10] D. Ceresoli, M.C. Righi, E. Tosatti, S. Scandolo, G. Santoro, and S. Serra, Exciton self-trapping in bulk polyethylene, Journal of Physics: Condensed Matter 17, 4621 (2005).

[9] M.C. Righi, R. Magri, and C.M. Bertoni, First-principles study of GaSb(001) surface reconstructions, AIP Conference Proceedings 772, 375-376 (2005).

[8] A. Catellani, G. Cicero, M.C. Righi, and C.A. Pignedoli, First principles simulation of SiC-based interfaces, Materials Science Forum 483-485, 541 (2005).

[7] M.C. Righi, Rita Magri, and C.M. Bertoni, First-principles study of Sb-stabilized GaSb(001) surface reconstructions, Physical Review B 71, 075323 (2005).

[6] M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, and A. Catellani, Kinetic MonteCarlo simulations of C diffusion on √3x√3 beta-SiC (111) based on ab-initio calculations, Computer Physics Communications 169, 50 (2005).

[5] M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, and A. Catellani, Ab initio simulation of homoepitaxial SiC growth, Physical Review Letters 91, 136101 (2003).

[4] M.C. Righi, C.A. Pignedoli, G. Borghi, R. Di Felice, C.M. Bertoni, and A. Catellani, Surface Induced Stacking Transition at SiC(0001), Physical Review B 66, 045320 (2002).

[3] S. Serra, S. Iarlori, E. Tosatti, S. Scandolo, M.C. Righi, and G.E. Santoro, Self-trapping vs. non-trapping of Electrons and Holes in Organic Insulators: Polyethylene, Chemical Physics Letters 360, 487 (2002).

[2] D. Ceresoli, M.C. Righi, E. Tosatti, S. Scandolo, G. Santoro, and S. Serra, Electron-hole Trapping and Self-Trapping in Polyethylene, “Festschrift in Honor of F. Bassani“, ed. by G. Grosso, G. Larocca and M.P. Tosi, Scuola Normale Superiore, Pisa, (2001).

[1] M.C. Righi, S. Scandolo, S. Serra, S. Iarlori, E. Tosatti, and G.E. Santoro, Surface States and Negative Electron Affinity in Polyethylene, Physical Review Letters 87, 076802 (2001).