[86] Edoardo Marquis, Francesca Benini, Babak Anasori, Andreas Rosenkranz, and Maria Clelia Righi How vacancies and edges trigger MXenes’ reaction with water, submitted (2022).
–
[85] A. Ciniero, G. Fatti, M. Marsili, D. Dini, and M.C. Righi On the origin of the tribocharging strength of PTFE, submitted (2022).
–
[84] S. Kajita, A. Pacini, G. Losi, N. Kikkawa, and M.C. Righi, Accurate multiscale simulation of frictional interfaces by Quantum Mechanics/Green’s Function molecular dynamics, submitted (2022).
–
[83] Y. Long, A. Pacini, M. Ferrario, N. Van Tran, S. Peeters, B. Thiebaut, S. Loehlé, J.M. Martin, M.C. Righi, and M.I. De Barros Bouchet, Graphene-induced superlubricity through antiviral hypericin in glycerol. A new concept for green lubrication, submitted (2022).
–
[82] P. Grützmacher, M. Cutini, E. Marquis, M.R. Ripol, H. Riedl, P. Kutrowatz, J. Bernardi, M.C. Righi, C. Gachot, and A. Erdemir, Spicing up a sliding contact – how sprinkling of selenide nano-powders into frictional contacts leads to lubricious 2D layers, submitted (2022).
–
[81] P. Restuccia, G. Losi, O. Chehami, M. Marsili, and M.C. Righi, High throughput accurate prediction of interfacial adhesion energies in metal-on-metal contacts, submitted (2022).
–
[80] A. Rosencratz, M.C. Righi, A. B. Anasori, and V. Mochalin, Perspective of 2D MXenes Tribology, Advanced Materials 35, 2207757 (2023).
–
[79] S. Peeters, G. Losi, S. Loehlé and M.C. Righi, Aromatic molecules as sustainable lubricants explored by ab initio simulations, Carbon, 203, 717 (2023).
–
[78] M. Cutini, G. Forghieri, M. Ferrario, and M.C. Righi, Adhesion, Friction and Tribochemical reactions at the Diamond-Silica Interface, Carbon 203, 601 (2023).
–
[77] P. V. Antonov, P. Restuccia, M.C. Righi, and J.W.M. Frenken, Attractive curves: the role of deformations in adhesion and friction on graphene, Nanoscale Advances 4, 4175 (2022).
–
[76] N.V. Tran, and M.C. Righi, Ab initio insights into the interaction mechanisms between H2, H2O, and O2 molecules with diamond surfaces, Carbon 199, 497 (2022).
–
[75] E. Marquis, M. Cutini, B. Anasori, A. Rosenkranz, and M.C. Righi, Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study, ACS Applied Nano Material 5, 10516 (2022).
–
[74] S. Peeters, G. Losi, P. Restuccia, and M. C. Righi, Unravelling the mechanism to form MoS2 lubricant layers from MoDTC by ab initio simulations, Applied Surface Science 606, 154880 (2022).
–
[73] G. Losi, M. Cutini, P. Restuccia, and M. C. Righi, Modeling phosphorene and MoS2 interacting with iron: lubricating effects compared to graphene, Journal of Nanostructure in Chemistry, in press (2022).
–
[72] S. Peeters, A. Barlini, J. Jain, N. N. Gosvami, and M. C. Righi, Adsorption and decomposition of ZDDP on lightweight metallic substrates: Ab initio and experimental insights, Applied Surface Science 600, 153947 (2022).
–
[71] Z. Liu, A. Hinaut, S. Peeters, S. Scherb, E. Meyer, M.C. Righi, and T. Glatzel, 2D KBr/Graphene Heterostructures—Influence on Work Function and Friction, Nanomaterials 12, 968 (2022).
–
[70] M. Wolloch, G. Losi, O. Chehaimi, F. Yalcin, M. Ferrario, and M.C. Righi, High-throughput generation of potential energy surfaces for solid interfaces, Computational Materials Science 207, 111302 (2022).
–
[69] M. Stella, C.D. Lorentz, and M.C. Righi, Effects of intercalated water on the lubricity of sliding layers under load: a theoretical investigation on MoS2, 2D Mater. 8, 35052 (2021).
–
[68] S. Peeters, C. Charrin, I. Duron, S. Loehlé, B. Thiebaut, and M.C. Righi, Importance of the catalytic effect of the substrate in the functionality of lubricant additives: the case of molybdenum dithiocarbamates, Materials Today Chemistry 21, 100487 (2021).
–
[67] Z. Liu, A. Hinaut, S. Peeters, S. Scherb, E. Meyer, M.C. Righi, and T. Glatzel, Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene, Beilstein Journal of Nanotechnology 12, 432 (2021).
–
[66] G. Losi, S. Peeters, F. Delayens, H. Vezin, S. Loehlé, B. Thiebaut, and M.C. Righi, Experimental and Ab Initio Characterization of Mononuclear Molybdenum Dithiocarbamates in Lubricant Mixtures, Langmuir 37, 4836 (2021).
–
[65] C. Ayestarán Latorre, J. P. Ewen, D. Dini, and M.C. Righi, Ab initio insights into the interaction mechanisms between boron, nitrogen and oxygen doped diamond surfaces and water molecules, Carbon 171, 575 (2021).
–
[64] G. Fatti, M.C. Righi, D. Dini, and A. Ciniero, Ab Initio Study of Polytetrafluoroethylene Defluorination for Tribocharging Applications, ACS Applied Polymer Materials 2, 5129 (2020).
–
[63] C. Corsini, S. Peeters, and M.C. Righi, Adsorption and Dissociation of Ni(acac)2 on Iron by Ab Initio Calculations, J. Phys. Chem. A 124, 8005 (2020).
–
[62] G. Ramirez, O. L. Eryilmaz, G. Fatti, M.C. Righi, J. Wen, and A. Erdemir, Tribochemical Conversion of Methane to Graphene and Other Carbon Nanostructures: Implications for Friction and Wear, ACS Appl. Nano Mater. 3, 8060 (2020).
–
[61] S. Peeters, P. Restuccia, S. Loehlé, B. Thiebaut, and M.C. Righi, Tribochemical Reactions of MoDTC Lubricant Additives with Iron by Quantum Mechanics / Molecular Mechanics Simulations, J. Phys. Chem. C 124, 13688 (2020).
–
[60] G. Losi, P. Restuccia, and M.C. Righi, Superlubricity in phosphorene identified by means of ab initio calculations, 2D Mater. 7, 025033 (2020).
–
[59] P. Restuccia, M. Ferrario and M.C. Righi, Monitoring water and oxygen splitting at graphene edges and folds: Insights into the lubricity of graphitic materials, Carbon 156, 93 (2020).
–
[58] A. Ciniero, G. Fatti, M.C. Righi, D. Dini, and T. Reddyhoff, A combined experimental and theoretical study on the mechanisms behind tribocharging phenomenon and the influence of triboemission, Tribology Online 14, 367 (2019).
–
[57] P. Restuccia, M. Ferrario, and M.C. Righi, Quantum Mechanics / Molecular Mechanics (QM/MM) applied to tribology: Real-time monitoring of tribochemical reactions of water at graphene edges, Computational Materials Science 173, 109400 (2019).
–
[56] G. Fatti, and M.C. Righi, Selenium Chemisorption Makes Iron Surfaces Slippery, Tribology Letters 67, 125 (2019).
–
[55] M. Wolloch, G. Losi, M. Ferrario, and M.C. Righi, High-throughput screening of the static friction and ideal cleavage strength of solid interfaces, Scientific Reports 9, 17062 (2019).
–
[54] S. Peeters, P. Restuccia, S. Loehlé, B. Thiebaut, and M.C. Righi, Characterization of Molybdenum Dithiocarbamates by First Principles Calculations, J. Phys. Chem A 123, 7007 (2019).
–
[53] M. Schulzendorf, A. Hinaut, M. Kisiel, R. Joehr, R. Pawiak, P. Restuccia, E. Meyer, M.C. Righi, and T. Glatzel, Altering the Properties of Graphene on Cu(111) by Intercalation of Potassium Bromide, ACS Nano 13, 5485, 5485 (2019).
–
[52] G. Fatti, M.C. Righi, D. Dini, and A. Ciniero First-Principles Insights into the Structural and Electronic Properties of Polytetrafluoroethylene in Its High-Pressure Phase (Form III) J. Phys. Chem. C 123, 6250 (2019).
–
[51] G. Fatti, P. Restuccia, C. Calandra, and M.C. Righi, Phosphorus adsorption on Fe(110): An ab initio comparative study of iron passivation by different adsorbates, Journal of Physical Chemistry C 122, 28105 (2018).
–
[50] M. Wolloch, G. Levita, P. Restuccia, and M.C. Righi, Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces, Physical Review Letters 121, 026804 (2018).
–
[49] P. Restuccia, G. Levita, M. Wolloch, G. Losi, G. Fatti, M. Ferrario, and M.C. Righi, Ideal adhesive and shear strengths of solid interfaces: A high throughput ab initio approach, Computational Materials Science 154, 517 (2018).
–
[48] S. Loehlé, and M.C. Righi, Ab Initio Molecular Dynamics Simulation of Tribochemical Reactions Involving Phosphorus Additives at Sliding Iron Interfaces, Lubricants 6, 31 (2018).
–
[47] M.C. Righi, Chapter Understanding the Tribochemistry of Lubricant Additives by Ab initio Calculations: The Case of Phosphites of the book Advanced Analytical Methods in Tribology (2018).
–
[46] G. Levita, S. Kajita, and M.C. Righi, Water adsorption on the diamond (111) surfaces: An ab initio study, Carbon 127, 533 (2017).
–
[45] S. Loehlé, and M.C. Righi, First principles study of organophosphorus additives in boundary lubrication conditions: Effects of hydrocarbon chain length, Lubrication Science 29, 485 (2017).
–
[44] D. Marchetto, P. Restuccia, A. Ballestrazzi, M.C. Righi, A. Rota, and S. Valeri,Surface passivation by graphene in the lubrication of iron: A comparison with bronze, Carbon 116, 375 (2017).
–
[43] G. Levita, and M.C. Righi, Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation, Chem. Phys. Chem 18, 1475 (2017). Cover picture of the issue.
–
[42] G. Levita, P. Restuccia, and M.C. Righi, Graphene and MoS2 interacting with water: A comparison by ab initio calculations, Carbon 107, 878 (2016).
–
[41] P. Restuccia, M. Ferrario, P. L. Silvestrelli, G. Mistura, and M.C. Righi Size-dependent commensurability and its possible role in determining the frictional behavior of adsorbed systems, Phys. Chem. Chem. Phys. 18, 28997 (2016) (PDF).
–
[40] P. Restuccia, and M. C. Righi Tribochemistry of graphene on iron and its possible role in lubrication of steel, Carbon 106, 118 (2016) (PDF).
–
[39] M.C. Righi, S. Loehle, M.I. De Barros Bouchet, S. Mambingo-Doumbe, and J.M. Martin A comparative study on the functionality of S- and P-based lubricant additives by combined first principles and experimental analysis, RSC Advances 6, 47753 (2016).
–
[38] M.C. Righi, G. Zilibotti, S. Corni, M. Ferrario, and C.M. Bertoni First-Principle Molecular Dynamics of Sliding Diamond Surfaces. Tribochemical Reactions with Water and Load Effects, J. Low Temperature Physics 185, 174 (2016).
–
[37] S. Kajita, and M.C. Righi A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics, Carbon 103, 193 (2016) (PDF).
–
[36] S. Kajita, and M.C. Righi Insights into the tribochemistry of silicon-doped carbon based films by ab initio analysis of water/surface interactions, Tribology Letters 61, 17 (2016) (PDF).
–
[35] M.C. Righi, S. Loehle, M.I. de Barros Bouchet, D. Philippon, and J.M. Martin Trimethyl-phosphite dissociative adsorption on iron by combined first-principle calculations and XPS experiments, RSC Advances 5, 101162 (2015).
–
[34] G. Levita, E. Molinari, T. Polcar, and M.C. Righi First principles comparative study on interlayer adhesion and shear strength of transition metal dichalcogenides and graphene, Phys. Rev. B 92, 085434 (2015).
–
[33] M.I. De Barros-Bouchet, M.C. Righi, D. Philippon, S. Mambingo-Doumbe, T. Le-Mogne, J.M. Martin, and A. Buffet Tribochemistry of phosphorus additives: experiments and first-principles calculations, RSC Advances 5, 49270 (2015).
–
[32] M. Pierno, L. Bignardi, M.C. Righi, L. Bruschi, S. Gottardi, M. Stohr, P. Silvestrelli, P. Rudolf, and G. Mistura Thermolubricity of Xe monolayers on graphene, Nanoscale 6, 8062 (2014).
–
[31] G. Levita, A. Cavaleiro, E. Molinari, T. Polcar, and M.C. Righi Sliding properties of MoS2 layers: Load and interlayer orientation effects, J. Phys. Chem. C 118, 13809 (2014).
–
[30] G. Zilibotti, S. Corni, and M.C. Righi Load-induced confinement activates diamond lubrication by water, Phys. Rev. Lett. 111, 146101 (2013).
–
[29] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi Frictional properties of multilayer graphene by ab initio and classical molecular dynamics calculations, 5th World Tribology Congress (WTC) 1, 744 (2013).
–
[28] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi Potential energy surface for graphene on graphene: derivation, analytical description, and microscopic interpretation, Phys. Rev. B 86, 245434 (2012).
–
[27] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi Friction by shear deformations in multilayer graphene, J. Phys. Chem. C 116, 21104 (2012).
–
[26] M. Reguzzoni, and M.C. Righi Size dependence of static friction between solid clusters and substrates, Phys. Rev. B 85, 201412(R) (2012).
–
[25] M.I. De Barros-Bouchet, G. Zilibotti, C. Matta, M.C. Righi, L. Vandenbulcke, B. Vacher, and J.M. Martin Friction of Diamond in Presence of Water Vapor and Hydrogen Gas. Coupling Gas Phase Lubrication and First Principles Studies, J. Phys. Chem. C 116, 6966 (2012).
–
[24] G. Zilibotti, S. Corni, and M.C. Righi Formation energy of dangling bonds on hydrogenated diamond surfaces: a first principle study, Phys. Rev. B 85, 033406 (2012).
–
[23] G. Zilibotti, and M.C. Righi Ab Initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage, Langmuir 27, 6862 (2011).
–
[22] G. Zilibotti, M. Ferrario, C.M. Bertoni, and M.C. Righi Ab initio calculation of adhesion and potential corrugation of diamond (001) interfaces, Computer Physics Communications 182, 1796 (2011).
–
[21] O. Manelli, S. Corni, and M.C. Righi Water adsorption on native and hydrogenated diamond (001) surfaces, J. Phys. Chem. C 114, 7045 (2010).
–
[20] M. Reguzzoni, M. Ferrario, S. Zapperi, and M.C. Righi Onset of frictional slip by domain nucleation in adsorbed monolayers, Proceedings of the National Accademy of Sciences (PNAS) 107, 1113 (2010).
–
[19] M. Rosini, M.C. Righi, P. Kratzer, and R. Magri In adsorption and diffusion on In-ritch (2×4) reconstructed InGaAs surfaces on GaAs(001), AIP conference proceedings 1199, 21 (2010).
–
[18] M. Bertelli, J. Homoth, M. Wenderoth, A. Rizzi, R. G. Ulbrich, M.C. Righi, C.M. Berti, and A. Catellani Atomic and electronic structure of the nonpolar GaN(1-100) surface, Phys. Rev. B 80, 115324 (2009).
–
[17] G. Zilibotti, M.C. Righi, and M. Ferrario Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces, Phys. Rev. B 79, 075420 (2009).
–
[16] M. Rosini, M.C. Righi, P. Kratzer, and R. Magri Indium surface diffusion on InAs (2×4) reconstructed wetting layers on GaAs(001), Phys. Rev. B 79, 075302 (2009).
–
[15] M.C. Righi, and M. Ferrario Pressure induced friction collapse of rare gas boundary layers sliding over metal surfaces, Phys. Rev. Lett. 99, 176101 (2007).
–
[14] M. Bertelli, J. Homoth, M. Wenderoth, A. Rizzi, R. G. Ulbrich, M.C. Righi, C.M. Bertoni, and A. Catellani Atomic and electronic structure of the cleaved 6H-SiC(11-20) surface, Phys. Rev. B 75, 165312 (2007).
–
[13] M.C. Righi, and M. Ferrario Potential energy surface for rare gases adsorbed on Cu(111): Parametrization of the gas/surface interaction potential, J. Phys. Condens. Matter 19, 305008 (2007).
–
[12] M.C. Righi, Rita Magri, and C.M. Bertoni Study of arsenic for antimony exchange at the Sb-stabilized GaSb(001) surface, Applied Surface Science 252, 5271 (2006).
–
[11] M.C. Righi, C.A. Pignedoli, R. Di Felice, A. Catellani, and C.M. Bertoni Combined ab initio and kinetic Monte Carlo simulations of C diffusion on the √3x√3 b-SiC(111) surface, Phys. Rev. B 71, 075303 (2005).
–
[10] D. Ceresoli, M.C. Righi, E. Tosatti, S. Scandolo, G. Santoro, and S. Serra Exciton self-trapping in bulk polyethylene, Journal of Physics: Cond. Matter 17, 4621 (2005).
–
[9] M.C. Righi, R. Magri, and C.M. Bertoni, First-principles study of GaSb(001) surface reconstructions, AIP Conference Proceedings 772, 375-376 (2005).
–
[8] A. Catellani, G. Cicero, M.C. Righi, and C.A. Pignedoli First principles simulation of SiC-based interfaces, Materials Science Forum 483-485, 541 (2005).
–
[7] M.C. Righi, Rita Magri, and C.M. Bertoni First-principles study of Sb-stabilized GaSb(001) surface reconstructions, Phys. Rev. B 71, 075323 (2005).
–
[6] M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, and A. Catellani Kinetic MonteCarlo simulations of C diffusion on √3x√3 beta-SiC (111) based on ab-initio calculations, Computer Physics Comm. 169, 50 (2005).
–
[5] M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, and A. Catellani Ab initio simulation of homoepitaxial SiC growth, Phys. Rev. Lett. 91, 136101 (2003).
–
[4] M.C. Righi, C.A. Pignedoli, G. Borghi, R. Di Felice, C.M. Bertoni, and A. Catellani Surface Induced Stacking Transition at SiC(0001), Phys. Rev. B 66, 045320 (2002).
–
[3] S. Serra, S. Iarlori, E. Tosatti, S. Scandolo, M.C. Righi, and G.E. Santoro Self-trapping vs. non-trapping of Electrons and Holes in Organic Insulators: Polyethylene, Chemical Physics Letters 360, 487 (2002).
–
[2] D. Ceresoli, M.C. Righi, E. Tosatti, S. Scandolo, G. Santoro, and S. Serra, Electron-hole Trapping and Self-Trapping in Polyethylene, “Festschrift in Honor of F. Bassani“, ed. by G. Grosso, G. Larocca and M.P. Tosi, Scuola Normale Superiore, Pisa, (2001).
–
[1] M.C. Righi, S. Scandolo, S. Serra, S. Iarlori, E. Tosatti, and G.E. Santoro Surface States and Negative Electron Affinity in Polyethylene, Phys. Rev. Lett. 87, 076802 (2001).