Publications

[96] E. Poli, M. Cutini, M.A.M.A. Nosir, O. Chehaimi, and M.C. Righi, Effects of surface chemical modifications on the adhesion of metallic interfaces. An high-throughput analysis, submitted (2023) (arXiv version).

[95] S. Giaremis, and M.C. Righi, Ab initio investigation of the effects of B-doping on the adsorption of H2O, H2 and O2 molecules at diamond surfaces, submitted (2023) (arXiv version).

[94] Y. Long, A. Pacini, M. Ferrario, N. Van Tran, S. Peeters, B. Thiebaut, S. Loehlé, J.M. Martin, M.C. Righi, and M.I. De Barros Bouchet, Graphene-induced superlubricity through antiviral hypericin in glycerol. A new concept for green lubrication, submitted (2023).

[93] A. Rosenkranz, B. Wang, D. Zambrano, J. Marqués Henríquez, J.Y. Aguilar-Hurtado, E. Marquis, P. Restuccia, B.C. Wyatt, M.C. Righi, and B. Anasori, Solid-Lubrication performance of Ti3C2Tx — effect of tribo-chemistry and exfoliation, Materials Today Nano 25, 100464 (2024) (PDF).

[92] Y. Guan, E. Marquis, M.C. Righi, J. Galipaud, F. Dubreuil, J. Dufils, E. Macron, F. Dassenoy, M.I. De Barros Bouchet, Friction control by load-induced structure modification of overbased detergent in fully formulated lubricant, Tribology International 192, 109307 (2024).

[91] H.T.T. Ta, N.V. Tran, and M.C. Righi, Atomistic Wear Mechanisms in Diamond: Effects of Surface Orientation, Stress, and Interaction with Adsorbed Molecules, Langmuir 39, 14396 (2023) (PDF).

[90] F. Benini, P. Restuccia, and M.C. Righi, Zinc dialkyldithiophosphates adsorption and dissociation on ferrous substrates: An ab initio study, Applied Surface Science 642, 158419 (2023) (PDF).

[89] H.T.T. Ta, N.V. Tran, and M.C. Righi, Nanotribological Properties of Oxidized Diamond/Silica Interfaces: Insights into the Atomistic Mechanisms of Wear and Friction by Ab Initio Molecular Dynamics Simulations, ACS Applied Nano Materials 6, 16674 (2023) (PDF).

[88] P.G. Grützmacher, M. Cutini, E. Marquis, M. Rodríguez Ripoll, H. Riedl, P. Kutrowatz, S. Bug, C.J. Hsu, J. Bernardi, C. Gachot, A. Erdemir, and M.C. Righi, Se Nano-Powder Conversion into Lubricious 2D Selenide Layers by Tribochemical Reactions, Advanced Materials 35, 2302076 (2023) (PDF).

[87] G. Losi, O. Chehaimi, and M.C. Righi, TribChem: a Software for the First-principles, High-Throughput Study of Solid Interfaces and their Tribological properties, Journal of Chemical Theory and Computation 19, 5231 (2023) (PDF).

[86] S. Kajita, A. Pacini, G. Losi, N. Kikkawa, and M.C. Righi, Accurate multiscale simulation of frictional interfaces by Quantum Mechanics/Green’s Function molecular dynamics, Journal of Chemical Theory and Computation 19, 5176 (2023) (PDF).

[85] E. Pedretti, P. Restuccia, and M.C. Righi, Xsorb: a software for identifying the most stable adsorption configuration and energy of a molecule on a crystal surface, Computer Physics Communications 291, 108827 (2023) (PDF).

[84] A. Ciniero, G. Fatti, M. Marsili, D. Dini, and M.C. Righi, Defects drive the tribocharging strength of PTFE: an ab-initio study, Nano Energy 112, 108502 (2023) (PDF).

[83] F. Benini, N. Bassoli, P. Restuccia, M. Ferrario, and M.C. Righi, Interaction of water and oxygen molecules with phosphorene: an ab initio study, Molecules 28, 3570 (2023).

[82] P. Restuccia, G. Losi, O. Chehami, M. Marsili, and M.C. Righi, High throughput first principles prediction of interfacial adhesion energies in metal-on-metal contacts, ACS Applied Materials & Interfaces 15, 19624 (2023).

[81] E. Marquis, F. Benini, B. Anasori, A. Rosenkranz, and M. C. Righi, Effect of vacancies and edges in promoting water chemisorption on titanium-based MXenes, Nano Convergence 10, 16 (2023).

[80] A. Rosencratz, M.C. Righi, A. B. Anasori, and V. Mochalin, Perspective of 2D MXenes Tribology, Advanced Materials 35, 2207757 (2023).

[79] S. Peeters, G. Losi, S. Loehlé and M.C. Righi, Aromatic molecules as sustainable lubricants explored by ab initio simulations, Carbon 203, 717 (2023).

[78] M. Cutini, G. Forghieri, M. Ferrario, and M.C. Righi, Adhesion, Friction and Tribochemical reactions at the Diamond-Silica Interface, Carbon 203, 601 (2023).

[77] G. Losi, M. Cutini, P. Restuccia, and M. C. Righi, Modeling phosphorene and MoS2 interacting with iron: lubricating effects compared to graphene, Journal of Nanostructure in Chemistry 13, 497 (2023).

[76] P.V. Antonov, P. Restuccia, M.C. Righi, and J.W.M. Frenken, Attractive curves: the role of deformations in adhesion and friction on graphene, Nanoscale Advances 4, 4175 (2022).

[75] N.V. Tran, and M.C. Righi, Ab initio insights into the interaction mechanisms between H2, H2O, and O2 molecules with diamond surfaces, Carbon 199, 497 (2022).

[74] E. Marquis, M. Cutini, B. Anasori, A. Rosenkranz, and M.C. Righi, Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study, ACS Applied Nano Material 5, 10516 (2022).

[73] S. Peeters, G. Losi, P. Restuccia, and M. C. Righi, Unravelling the mechanism to form MoS2 lubricant layers from MoDTC by ab initio simulations, Applied Surface Science 606, 154880 (2022).

[72] S. Peeters, A. Barlini, J. Jain, N. N. Gosvami, and M. C. Righi, Adsorption and decomposition of ZDDP on lightweight metallic substrates: Ab initio and experimental insights, Applied Surface Science 600, 153947 (2022).

[71] Z. Liu, A. Hinaut, S. Peeters, S. Scherb, E. Meyer, M.C. Righi, and T. Glatzel, 2D KBr/Graphene Heterostructures—Influence on Work Function and Friction, Nanomaterials 12, 968 (2022).

[70] M. Wolloch, G. Losi, O. Chehaimi, F. Yalcin, M. Ferrario, and M.C. Righi, High-throughput generation of potential energy surfaces for solid interfaces, Computational Materials Science 207, 111302 (2022).

[69] M. Stella, C.D. Lorentz, and M.C. Righi, Effects of intercalated water on the lubricity of sliding layers under load: a theoretical investigation on MoS2, 2D Mater. 8, 35052 (2021).

[68] S. Peeters, C. Charrin, I. Duron, S. Loehlé, B. Thiebaut, and M.C. Righi, Importance of the catalytic effect of the substrate in the functionality of lubricant additives: the case of molybdenum dithiocarbamates, Materials Today Chemistry 21, 100487 (2021).

[67] Z. Liu, A. Hinaut, S. Peeters, S. Scherb, E. Meyer, M.C. Righi, and T. Glatzel, Reconstruction of a 2D layer of KBr on Ir(111) and electromechanical alteration by graphene, Beilstein Journal of Nanotechnology 12, 432 (2021).

[66] G. Losi, S. Peeters, F. Delayens, H. Vezin, S. Loehlé, B. Thiebaut, and M.C. Righi, Experimental and Ab Initio Characterization of Mononuclear Molybdenum Dithiocarbamates in Lubricant Mixtures, Langmuir 37, 4836 (2021).

[65] C. Ayestarán Latorre, J. P. Ewen, D. Dini, and M.C. Righi, Ab initio insights into the interaction mechanisms between boron, nitrogen and oxygen doped diamond surfaces and water molecules, Carbon 171, 575 (2021).

[64] G. Fatti, M.C. Righi, D. Dini, and A. Ciniero, Ab Initio Study of Polytetrafluoroethylene Defluorination for Tribocharging Applications, ACS Applied Polymer Materials 2, 5129 (2020).

[63] C. Corsini, S. Peeters, and M.C. Righi, Adsorption and Dissociation of Ni(acac)2 on Iron by Ab Initio Calculations, J. Phys. Chem. A 124, 8005 (2020).

[62] G. Ramirez, O. L. Eryilmaz, G. Fatti, M.C. Righi, J. Wen, and A. Erdemir, Tribochemical Conversion of Methane to Graphene and Other Carbon Nanostructures: Implications for Friction and Wear, ACS Appl. Nano Mater. 3, 8060 (2020).

[61] S. Peeters, P. Restuccia, S. Loehlé, B. Thiebaut, and M.C. Righi, Tribochemical Reactions of MoDTC Lubricant Additives with Iron by Quantum Mechanics / Molecular Mechanics Simulations, J. Phys. Chem. C 124, 13688 (2020).

[60] G. Losi, P. Restuccia, and M.C. Righi, Superlubricity in phosphorene identified by means of ab initio calculations, 2D Mater. 7, 025033 (2020).

[59] P. Restuccia, M. Ferrario and M.C. Righi, Monitoring water and oxygen splitting at graphene edges and folds: Insights into the lubricity of graphitic materials, Carbon 156, 93 (2020).

[58] A. Ciniero, G. Fatti, M.C. Righi, D. Dini, and T. Reddyhoff, A combined experimental and theoretical study on the mechanisms behind tribocharging phenomenon and the influence of triboemission, Tribology Online 14, 367 (2019).

[57] P. Restuccia, M. Ferrario, and M.C. Righi, Quantum Mechanics / Molecular Mechanics (QM/MM) applied to tribology: Real-time monitoring of tribochemical reactions of water at graphene edges, Computational Materials Science 173, 109400 (2019).

[56] G. Fatti, and M.C. Righi, Selenium Chemisorption Makes Iron Surfaces Slippery, Tribology Letters 67, 125 (2019).

[55] M. Wolloch, G. Losi, M. Ferrario, and M.C. Righi, High-throughput screening of the static friction and ideal cleavage strength of solid interfaces, Scientific Reports 9, 17062 (2019).

[54] S. Peeters, P. Restuccia, S. Loehlé, B. Thiebaut, and M.C. Righi, Characterization of Molybdenum Dithiocarbamates by First Principles Calculations, J. Phys. Chem A 123, 7007 (2019).

[53] M. Schulzendorf, A. Hinaut, M. Kisiel, R. Joehr, R. Pawiak, P. Restuccia, E. Meyer, M.C. Righi, and T. Glatzel, Altering the Properties of Graphene on Cu(111) by Intercalation of Potassium Bromide, ACS Nano 13, 5485, 5485 (2019).

[52] G. Fatti, M.C. Righi, D. Dini, and A. Ciniero First-Principles Insights into the Structural and Electronic Properties of Polytetrafluoroethylene in Its High-Pressure Phase (Form III), J. Phys. Chem. C 123, 6250 (2019).

[51] G. Fatti, P. Restuccia, C. Calandra, and M.C. Righi, Phosphorus adsorption on Fe(110): An ab initio comparative study of iron passivation by different adsorbates, Journal of Physical Chemistry C 122, 28105 (2018).

[50] M. Wolloch, G. Levita, P. Restuccia, and M.C. Righi, Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces, Physical Review Letters 121, 026804 (2018).

[49] P. Restuccia, G. Levita, M. Wolloch, G. Losi, G. Fatti, M. Ferrario, and M.C. Righi, Ideal adhesive and shear strengths of solid interfaces: A high throughput ab initio approach, Computational Materials Science 154, 517 (2018). 

[48] S. Loehlé, and M.C. Righi, Ab Initio Molecular Dynamics Simulation of Tribochemical Reactions Involving Phosphorus Additives at Sliding Iron Interfaces, Lubricants 6, 31 (2018).

[47] M.C. Righi, Chapter Understanding the Tribochemistry of Lubricant Additives by Ab initio Calculations: The Case of Phosphites of the book Advanced Analytical Methods in Tribology (2018).

[46] G. Levita, S. Kajita, and M.C. Righi, Water adsorption on the diamond (111) surfaces: An ab initio study, Carbon 127, 533 (2017).

[45] S. Loehlé, and M.C. Righi, First principles study of organophosphorus additives in boundary lubrication conditions: Effects of hydrocarbon chain length, Lubrication Science 29, 485 (2017).

[44] D. Marchetto, P. Restuccia, A. Ballestrazzi, M.C. Righi, A. Rota, and S. Valeri, Surface passivation by graphene in the lubrication of iron: A comparison with bronze, Carbon 116, 375 (2017).

[43] G. Levita, and M.C. Righi, Effects of Water Intercalation and Tribochemistry on MoS2 Lubricity: An Ab Initio Molecular Dynamics Investigation, Chem. Phys. Chem 18, 1475 (2017). Cover picture of the issue.

[42] G. Levita, P. Restuccia, and M.C. Righi, Graphene and MoS2 interacting with water: A comparison by ab initio calculations, Carbon 107, 878 (2016).

[41] P. Restuccia, M. Ferrario, P. L. Silvestrelli, G. Mistura, and M.C. Righi, Size-dependent commensurability and its possible role in determining the frictional behavior of adsorbed systems, Phys. Chem. Chem. Phys. 18, 28997 (2016) (PDF).

[40] P. Restuccia, and M. C. Righi, Tribochemistry of graphene on iron and its possible role in lubrication of steel, Carbon 106, 118 (2016) (PDF).

[39] M.C. Righi, S. Loehle, M.I. De Barros Bouchet, S. Mambingo-Doumbe, and J.M. Martin, A comparative study on the functionality of S- and P-based lubricant additives by combined first principles and experimental analysis, RSC Advances 6, 47753 (2016).

[38] M.C. Righi, G. Zilibotti, S. Corni, M. Ferrario, and C.M. Bertoni, First-Principle Molecular Dynamics of Sliding Diamond Surfaces. Tribochemical Reactions with Water and Load Effects, J. Low Temperature Physics 185, 174 (2016).

[37] S. Kajita, and M.C. Righi, A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamicsCarbon 103, 193 (2016) (PDF).

[36] S. Kajita, and M.C. Righi Insights into the tribochemistry of silicon-doped carbon based films by ab initio analysis of water/surface interactions, Tribology Letters 61, 17 (2016) (PDF).

[35] M.C. Righi, S. Loehle, M.I. de Barros Bouchet, D. Philippon, and J.M. Martin, Trimethyl-phosphite dissociative adsorption on iron by combined first-principle calculations and XPS experiments, RSC Advances 5, 101162 (2015).

[34] G. Levita, E. Molinari, T. Polcar, and M.C. Righi, First principles comparative study on interlayer adhesion and shear strength of transition metal dichalcogenides and graphene, Phys. Rev. B 92, 085434 (2015).

[33] M.I. De Barros-Bouchet, M.C. Righi, D. Philippon, S. Mambingo-Doumbe, T. Le-Mogne, J.M. Martin, and A. Buffet, Tribochemistry of phosphorus additives: experiments and first-principles calculations, RSC Advances 5, 49270 (2015).

[32] M. Pierno, L. Bignardi, M.C. Righi, L. Bruschi, S. Gottardi, M. Stohr, P. Silvestrelli, P. Rudolf, and G. Mistura, Thermolubricity of Xe monolayers on graphene, Nanoscale 6, 8062 (2014).

[31] G. Levita, A. Cavaleiro, E. Molinari, T. Polcar, and M.C. Righi, Sliding properties of MoS2 layers: Load and interlayer orientation effects, J. Phys. Chem. C 118, 13809 (2014).

[30] G. Zilibotti, S. Corni, and M.C. Righi, Load-induced confinement activates diamond lubrication by water, Phys. Rev. Lett. 111, 146101 (2013).

[29] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi, Frictional properties of multilayer graphene by ab initio and classical molecular dynamics calculations, 5th World Tribology Congress (WTC) 1, 744 (2013).

[28] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi, Potential energy surface for graphene on graphene: derivation, analytical description, and microscopic interpretation, Phys. Rev. B 86, 245434 (2012).

[27] M. Reguzzoni, A. Fasolino, E. Molinari, and M.C. Righi, Friction by shear deformations in multilayer grapheneJ. Phys. Chem. C 116, 21104 (2012).

[26] M. Reguzzoni, and M.C. Righi, Size dependence of static friction between solid clusters and substrates, Phys. Rev. B 85, 201412(R) (2012).

[25] M.I. De Barros-Bouchet, G. Zilibotti, C. Matta, M.C. Righi, L. Vandenbulcke, B. Vacher, and J.M. Martin, Friction of Diamond in Presence of Water Vapor and Hydrogen Gas. Coupling Gas Phase Lubrication and First Principles Studies, J. Phys. Chem. C 116, 6966 (2012).

[24] G. Zilibotti, S. Corni, and M.C. Righi, Formation energy of dangling bonds on hydrogenated diamond surfaces: a first principle study, Phys. Rev. B 85, 033406 (2012).

[23] G. Zilibotti, and M.C. Righi, Ab Initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage, Langmuir 27, 6862 (2011).

[22] G. Zilibotti, M. Ferrario, C.M. Bertoni, and M.C. Righi, Ab initio calculation of adhesion and potential corrugation of diamond (001) interfaces, Computer Physics Communications 182, 1796 (2011).

[21] O. Manelli, S. Corni, and M.C. Righi, Water adsorption on native and hydrogenated diamond (001) surfaces, J. Phys. Chem. C 114, 7045 (2010).

[20] M. Reguzzoni, M. Ferrario, S. Zapperi, and M.C. Righi, Onset of frictional slip by domain nucleation in adsorbed monolayers, Proceedings of the National Accademy of Sciences (PNAS) 107, 1113 (2010).

[19] M. Rosini, M.C. Righi, P. Kratzer, and R. Magri, In adsorption and diffusion on In-ritch (2×4) reconstructed InGaAs surfaces on GaAs(001), AIP conference proceedings 1199, 21 (2010).

[18] M. Bertelli, J. Homoth, M. Wenderoth, A. Rizzi, R. G. Ulbrich, M.C. Righi, C.M. Berti, and A. Catellani, Atomic and electronic structure of the nonpolar GaN(1-100) surface, Phys. Rev. B 80, 115324 (2009).

[17] G. Zilibotti, M.C. Righi, and M. Ferrario, Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces, Phys. Rev. B 79, 075420 (2009).

[16] M. Rosini, M.C. Righi, P. Kratzer, and R. Magri, Indium surface diffusion on InAs (2×4) reconstructed wetting layers on GaAs(001), Phys. Rev. B 79, 075302 (2009).

[15] M.C. Righi, and M. Ferrario, Pressure induced friction collapse of rare gas boundary layers sliding over metal surfaces, Phys. Rev. Lett. 99, 176101 (2007).

[14] M. Bertelli, J. Homoth, M. Wenderoth, A. Rizzi, R. G. Ulbrich, M.C. Righi, C.M. Bertoni, and A. Catellani, Atomic and electronic structure of the cleaved 6H-SiC(11-20) surface, Phys. Rev. B 75, 165312 (2007).

[13] M.C. Righi, and M. Ferrario, Potential energy surface for rare gases adsorbed on Cu(111): Parametrization of the gas/surface interaction potential, J. Phys. Condens. Matter 19, 305008 (2007).

[12] M.C. Righi, Rita Magri, and C.M. Bertoni, Study of arsenic for antimony exchange at the Sb-stabilized GaSb(001) surface, Applied Surface Science 252, 5271 (2006).

[11] M.C. Righi, C.A. Pignedoli, R. Di Felice, A. Catellani, and C.M. Bertoni, Combined ab initio and kinetic Monte Carlo simulations of C diffusion on the √3x√3 b-SiC(111) surface, Phys. Rev. B 71, 075303 (2005).

[10] D. Ceresoli, M.C. Righi, E. Tosatti, S. Scandolo, G. Santoro, and S. Serra, Exciton self-trapping in bulk polyethylene, Journal of Physics: Cond. Matter 17, 4621 (2005).

[9] M.C. Righi, R. Magri, and C.M. Bertoni, First-principles study of GaSb(001) surface reconstructions, AIP Conference Proceedings 772, 375-376 (2005).

[8] A. Catellani, G. Cicero, M.C. Righi, and C.A. Pignedoli, First principles simulation of SiC-based interfaces, Materials Science Forum 483-485, 541 (2005).

[7] M.C. Righi, Rita Magri, and C.M. Bertoni, First-principles study of Sb-stabilized GaSb(001) surface reconstructions, Phys. Rev. B 71, 075323 (2005).

[6] M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, and A. Catellani, Kinetic MonteCarlo simulations of C diffusion on √3x√3 beta-SiC (111) based on ab-initio calculations, Computer Physics Comm. 169, 50 (2005).

[5] M.C. Righi, C.A. Pignedoli, R. Di Felice, C.M. Bertoni, and A. Catellani, Ab initio simulation of homoepitaxial SiC growth, Phys. Rev. Lett. 91, 136101 (2003).

[4] M.C. Righi, C.A. Pignedoli, G. Borghi, R. Di Felice, C.M. Bertoni, and A. Catellani, Surface Induced Stacking Transition at SiC(0001), Phys. Rev. B 66, 045320 (2002).

[3] S. Serra, S. Iarlori, E. Tosatti, S. Scandolo, M.C. Righi, and G.E. Santoro, Self-trapping vs. non-trapping of Electrons and Holes in Organic Insulators: Polyethylene, Chemical Physics Letters 360, 487 (2002).

[2] D. Ceresoli, M.C. Righi, E. Tosatti, S. Scandolo, G. Santoro, and S. Serra, Electron-hole Trapping and Self-Trapping in Polyethylene, “Festschrift in Honor of F. Bassani“, ed. by G. Grosso, G. Larocca and M.P. Tosi, Scuola Normale Superiore, Pisa, (2001).

[1] M.C. Righi, S. Scandolo, S. Serra, S. Iarlori, E. Tosatti, and G.E. Santoro, Surface States and Negative Electron Affinity in Polyethylene, Phys. Rev. Lett. 87, 076802 (2001).