Elemental Solids

Main properties of homogeneous solids as obtained by means of first principle high throughput calculations are reported. The Vienna Ab Initio Simulation Package (VASP), pymatgen, atomate, and the FireWorks platform are used.

ELEMENTAL BULKS

Element Material ID Space Group Crystal System Lattice constant (Å) Bulk Modulus (GPa) Ecut (eV) K-points
Li mp-135 Im-3m bcc 3.439 14.23 525.0 16, 16, 16 (4.7)
Be mp-87 P6₃/mmc hcp 2.263, 3.575 124.85 300.0 15 15 9 (4.6)
C mp-66 Fd-3m fcc 3.573 430.29 400.0 12, 12, 12 (3.3)
Na mp-127 Im-3m bcc 4.193 7.98 300.0 22, 22, 22 (5.2)
Mg mp-153 P6₃/mmc hcp 3.208, 5.135 35.66 400.0 15 15 8 (6.2)
Al mp-134 Fm-3m fcc 4.045 76.93 275.0 26, 26, 26 (6.4)
Si mp-149 Fm-3m fcc 5.473 87.66 225.0 20, 20, 20 (3.6)
K mp-58 Im-3m bcc 5.281 3.48 275.0 29, 29, 29 (5.4)
Ca mp-45 Fm-3m fcc 5.533 17.31 300.0 20, 20, 20 (3.6)
Sc mp-67 P6₃/mmc hcp 3.319, 5.178 53.49 250.0 9 9 5 (3.7)
Ti mp-46 P6₃/mmc hcp 2.935, 4.659 112.17 250.0 9 9 5 (3.3)
V mp-146 Im-3m bcc 2.998 181.76 300.0 15, 15, 15 (5.1)
Cr mp-90 Im-3m bcc 3.309 179.08 300.0 12, 12, 12 (3.7)
Mn mp-35 I-43m cubic 3.309 275.36 350.0 5 5 5 (3.9)
Fe mp-13 Im-3m bcc 2.831 178.45 325.0 11, 11, 11 (3.9)
Co mp-54 P6₃/mmc hcp 2.492, 4.02 211.62 300.0 11 11 6 (3.5)
Ni mp-23 Fm-3m fcc 3.521 197.37 400.0 12, 12, 12 (3.3)
Cu mp-30 Fm-3m fcc 3.633 140.07 375.0 13, 13, 13 (3.7)
Zn mp-79 P6₃/mmc hcp 2.625, 5.203 72.67 275.0 16 16 7 (5.5)
Ge mp-32 Fd-3m fcc 5.761 58.65 275.0 28, 28, 28 (4.8)
Rb mp-70 Im-3m bcc 5.677 2.86 225.0 33, 33, 33 (5.8)
Sr mp-76 Fm-3m fcc 6.019 11.61 225.0 27, 27, 27 (4.5)
Y mp-112 P6₃/mmc hcp 3.658, 5.664 40.35 275.0 11 11 6 (5.1)
Zr mp-131 P6₃/mmc hcp 3.239, 5.172 93.89 250.0 8 8 5 (3.3)
Nb mp-75 Im-3m bcc 3.32 173.68 200.0 18, 18, 18 (5.3)
Mo mp-129 Im-3m bcc 3.16 257.98 250.0 18, 18, 18 (5.7)
Tc mp-113 P6₃/mmc hcp 2.75, 4.404 297.99 275.0 10 10 5 (3.5)
Ru mp-33 P6₃/mmc hcp 2.72, 4.294 310.38 275.0 14 14 8 (4.9)
Rh mp-74 Fm-3m fcc 3.83 254.79 275.0 16, 16, 16 (4.3)
Pd mp-2 Fm-3m fcc 3.943 163.92 275.0 19, 19, 19 (4.8)
Ag mp-124 Fm-3m fcc 4.149 89.27 300.0 17, 17, 17 (4.2)
Cd mp-94 P6₃/mmc hcp 3.009, 5.944 42.96 275.0 16 16 7 (6.3)
Cs mp-1 Im-3m bcc 6.158 2.08 225.0 39, 39, 39 (6.3)
Ba mp-122 Im-3m bcc 5.029 8.89 225.0 23, 23, 23 (4.6)
La mp-26 P6₃/mmc hcp 3.772, 12.067 25.41 225.0 8 8 3 (3.9)
Nd mp-123 P6₃/mmc hcp 3.708, 11.915 33.85 225.0 9 9 3 (4.1)
Pm mp-867200 P6₃/mmc hcp 3.675, 11.826 35.5 175.0 9 9 3 (4.1)
Gd mp-155 P6₃/mmc hcp 3.65, 5.828 34.58 250.0 7 7 4 (3.1)
Tb mp-18 P6₃/mmc hcp 3.637, 5.658 39.32 225.0 13 13 8 (6.4)
Dy mp-88 P6₃/mmc hcp 3.624, 5.613 40.7 225.0 12 12 7 (5.5)
Ho mp-144 P6₃/mmc hcp 3.608, 5.576 42.11 225.0 12 12 7 (5.5)
Er mp-99 P6₃/mmc hcp 3.587, 5.546 43.82 225.0 12 12 7 (5.5)
Tm mp-143 P6₃/mmc hcp 3.566, 5.519 45.14 200.0 9 9 6 (4.4)
Yb mp-162 Fm-3m fcc 5.418 15.33 200.0 24, 24, 24 (4.5)
Lu mp-145 P6₃/mmc hcp 3.524, 5.47 47.03 225.0 10 10 6 (4.4)
Hf mp-103 P6₃/mmc hcp 3.199, 5.076 108.8 225.0 8 8 4 (3.1)
Ta mp-50 Im-3m bcc 3.322 194.02 200.0 19, 19, 19 (5.7)
W mp-91 Im-3m bcc 3.186 301.55 225.0 25, 25, 25 (7.9)
Re mp-8 P6₃/mmc hcp 2.777, 4.491 364.4 275.0 9 9 5 (3.1)
Os mp-49 P6₃/mmc hcp 2.757, 4.354 402.6 250.0 13 13 8 (4.9)
Ir mp-101 Fm-3m fcc 3.872 349.0 225.0 29, 29, 29 (7.5)
Pt mp-126 Fm-3m fcc 3.968 247.15 250.0 23, 23, 23 (5.9)
Au mp-81 Fm-3m fcc 4.158 137.47 275.0 21, 21, 21 (5)
Tl mp-82 P6₃/mmc hcp 3.55, 5.74 27.0 250.0 12 12 6 (5.4)
Pb mp-20483 Fm-3m fcc 5.039 39.81 250.0 31, 31, 31 (6.1)
Ac mp-10018 Fm-3m fcc 5.675 23.73 175.0 24, 24, 24 (4.2)
Th mp-37 Fm-3m fcc 5.056 55.89 250.0 45, 45, 45 (8.9)

Notes:

– Most of the Material IDs correspond to the Materials Project IDs reachable at Materials Project site.

– The Perdew–Burke–Ernzerhof (PBE) for the Generalized Gradient Approximation (GGA) of the exchange-correlation functional is used (John P. Perdew, Kieron Burke, and Matthias Ernzerhof Phys. Rev. Lett. 77, 3865 (1996)).

– The lattice constants reported for the hexagonal crystals correspond to the in plane (a) and vertical (c) cell edges. They are obtained with a variable cell relaxation.

– The bulk moduli is calculated as the second derivative of the total energy with respect to the lattice constant by fitting the Birch-Murnaghan equation of state.

– The energy cutoff is converged with respect to the equilibrium volume and the bulk modulus using subsequent fits to the Birch-Murnaghan equation of states with increasing energy cutoff.

– The k-points mesh is converged with respect to the total energy of the systems. In the table, the optimal Monkhorst-Pack grid and the corresponding k-points density are reported (H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976)).